Review Final Exam , MTH 205, Fall 2014

Ayman Badawi

QUESTION 1. Solve for $y(x): y^{(2)}-\frac{y^{\prime}}{x^{2}}+\frac{y}{x^{3}}=\frac{10}{x^{3}}$. Given $y(x)=x$ is a solution to the associated homogenous equation.

QUESTION 2. An object weighing 8 pounds stretches a spring 2feet. Assume that an air-resistance is numerically equals to 2 times the velocity of the motion $x(t)$ acts on the system. a) Determine the equation of motion $x(t)$ if the object is initially released from the equilibrium position with an upward velocity $3 \mathrm{ft} / \mathrm{s}$.
b) Will the spring ever return to the equilibrium position? explain
c) If the answer to (b)is no, then at any time $t>0$, will the motion of the spring be above or below the equilibrium position? Explain

QUESTION 3. Solve for $x(t), y(t)$

$$
\begin{aligned}
& x^{\prime}(t)-y(t)=0 \\
& x(t)+y^{(2)}(t)=t^{2}, \text { where } x(0)=0, y(0)=0, y^{\prime}(0)=2
\end{aligned}
$$

QUESTION 4. Let $A(t)$ be the population of a small town at time t where t is time in years. Given that the population of the town now is 1000 , and the rate of growth is proportional to $\left(\frac{1}{A(t)}+A(t)\right)$. If the population of the town after 1 year is 1200 , what will be the population of the town after 3 years?

QUESTION 5. Given $y^{\prime}=-y^{4}+9 y^{2}$. Find the critical points of the D.E, and label each as STABLE, SEMI-STABLE, NON-STABLE. If the graph of a solution to the D.E is passing through the point $(4,0)$, then sketch a rough graph of this solution. If the graph of a solution to the D.E. is passing through the point $(4,-2)$, then sketch a rough graph of this solution.
QUESTION 6. Given $y=x e^{x}$ is a solution to the D.E : $a y^{(2)}+b y^{\prime}+y=e^{x}$, where a, b are some constants. Find the general solution to the D.E: $a y^{(2)}+b y^{\prime}+y=0$.
QUESTION 7. Find the solution to $\frac{d y}{d x}=\frac{1}{x+4 y^{3} x^{3} e^{-2 y}}$
QUESTION 8. Solve the D.E $: \frac{d y}{d x}=(x+y)^{2} \sin ^{2}\left(\frac{x+y-1}{x+y}\right)-1$
QUESTION 9. Find the general solution to $2 x y^{(2)}-10 y^{\prime}+\frac{18}{x} y=0$. If $y(1)=10$, and $y^{\prime}(1)=31$, what is THE SOLUTION of the D.E.
QUESTION 10. Solve for $y(x)$ such that $\int_{0}^{x} x e^{(x-2)} y^{\prime}(t) d t=x^{2} U(x-1)$, and $y(2)=12$

QUESTION 11. Find the general solution to $\sin (x) y^{(2)}-\cos (x) y^{\prime}=1_{\left[\operatorname{hint} \int \csc ^{2}(x) d x=\right.}=$ $-\cot (x)+c]$

QUESTION 12. Solve for $x(t)$ and $y(t): x^{\prime}(t)-y(t)=0, x(t)+\int_{0}^{t} y(r) d r=2 t, x(1)=1$.
QUESTION 13. (i) $y^{\prime}=\frac{x^{2}+y^{2}}{x y}$ [Hint: by rearranging the equation we have $y^{\prime}-\frac{y}{x}=\frac{x}{y}$, Bernouli, here $n=-1,1-n=$ 2, thus $w=y^{2}$, the solution is $\left.y^{2}=x^{2} \ln \left(x^{2}\right)+c x^{2}=2 x^{2} \ln (|x|)+c x^{2}\right]$
(ii) $y^{\prime}=\left(2 x+x^{2}\right) e^{(x+3 y)}$ [Hint: separable, $y^{\prime}=\frac{\left(2 x+x^{2}\right) e^{x}}{e^{-3 y}}$, solution $\frac{-1}{3} e^{-3 y}=x^{2} e^{x}+c$]
(iii) $y^{\prime}=\frac{x^{2}+2}{y}$ [Hint: separable, $\int y d y=\int\left(x^{2}+2\right) d x$, do it]
(iv) $y^{\prime}=(x+y)^{2}+8$ [Hint: reduced to sparable $w=(x+y), d w / d x=1+d y / d x, d w / d x=w^{2}+9$, solution: $3 \tan ^{-1}(w / 3)=x+c$, hence $\left.3 \tan ^{-1}((x+y) / 3)=x+c\right]$

QUESTION 14. (i) $e^{x} y^{\prime}+\frac{e^{x}}{x} y=1$ and $x>0$ [You end up with $y=\frac{\int x e^{-x} d x}{x}$ so finish it now]
(ii) $x^{2} y^{\prime}+y=1$ [you end up with $y=-x \int \frac{e^{-1 / x}}{x^{2}} d x$]
(iii) $y^{\prime}+2 y=\left[2 x e^{x^{2}}+e^{x^{2}}\right] \sqrt{y}$ [you end up with $\left[0.5 \xlongequal{\int\left[2 x e^{x^{2}}+e^{x^{2}}\right] e^{x}} d x e^{x}\right]$
(iv) $y^{\prime}+3 x y=x^{3} \sqrt[3]{y^{2}}$

QUESTION 15. (i) find $\ell^{-1}\left\{\frac{3^{-s}}{s(s+2)}\right\}$
(ii) Find $\ell^{-1}\left\{\frac{s^{3}+24}{s^{3}}\right\}$
(iii) Find $\ell^{-1}\left\{\frac{e^{-2 s}}{(s+4)^{2}+4}\right\}$
(iv) Find $\ell\left\{u(x-1) e^{(x-1)} \sin (x-1)\right\}$
(v) Find $\ell^{-1}\left\{\frac{s+2}{s^{2}+4 s+5}\right\}$
(vi) Find $\ell\left\{\int_{0}^{x} e^{2 x-r} \sin (r) d r\right\}$

QUESTION 16. Find the largest interval around x so that the LDE: $\left.\frac{x-3}{\sqrt{3 x+6}}\right) y^{(4)}+(x-1) y=x^{2}+13, y^{\prime}(1)=7, y(1)=$ -6 has a unique solution.
QUESTION 17. 1) Show that $c_{1} \sin (x)+c_{2} \cos (x)$ is a solution to the LDE : $y^{(2)}+y=0$, where c_{1}, c_{2} are some constants.
2) Assume that $y^{\prime}(\pi)=1$ and $y(\pi / 2)=1$. Show that the given LDE has no solution in this case. Does this contradict the Initial Value Theorem?
3) Assume that $y^{\prime}(\pi)=-1$ and $y(\pi / 2)=1$. Show that the given LDE has infinitely many solutions. Does this contradict the Initial Value Theorem?
QUESTION 18. 1) Find $\ell\left\{e^{4 x}\right\}$,
2) $\ell^{-1}\left\{\frac{s+3}{s^{2}-7 s+6}\right\}$.
3) Find $\ell\left\{5^{(2 x+1)}\right\}$
4) Find $\ell^{-1}\left\{\frac{7^{-x}}{(s+6)^{4}}\right\}$

QUESTION 19. Solve the following DE (use Laplace): 1) $y^{(2)}+8 y^{\prime}+12 y=e^{-2 x}, y(0)=0, y^{\prime}(0)=0$.

$$
\text { 2) } 2 y^{(2)}+3 y^{\prime}+y=\sin (2 x) 0, y(0)=3 \text { and } y^{\prime}(0)=-2
$$

QUESTION 20. (i) Find $\ell\left\{U(x-3) 7^{2 x}\right\}$
(ii) Find $\ell\left\{\int_{0}^{x} e^{-3 r} \sin (2 r) d r\right\}$ [Hint : Note $e^{-3 r}=e^{-3 x} e^{3 x-3 r}$. Thus $\left.\ell\left\{\int_{0}^{x} e^{-3 r} \sin (2 r) d r\right\}=\ell\left\{e^{-3 x} \int_{0}^{x} e^{3 x-3 r} \sin (2 r) d r\right\}\right]$
(iii) Find $\ell^{-1}\left\{\frac{s+10}{(s+4)^{4}}\right\}$
(iv) Find $\ell^{-1}\left\{\frac{s 5^{-s}}{(s+3)^{2}+4}\right\}$
(v) Use CONVOLUTION Twice to find $\ell^{-1}\left\{\frac{1}{s^{2}\left(s^{2}+9\right)}\right\}$
(vi) Use convolution to find $\ell^{-1}\left\{\frac{1}{(s+4)^{2}\left((s+4)^{2}+9\right)}\right\}$ [Hint: Use 5]
(vii) Find $\ell^{-1}\left\{\frac{8 e^{-3 s}}{s^{2}-4}\right\}$
(viii) Let

$$
k(x)= \begin{cases}2 & 0 \leq x<4 \\ 6 & x \geq 4\end{cases}
$$

Solve $y^{(2)}-6 y^{\prime}+8 y=k(x), \mathrm{y}(0)=y^{\prime}(0)=0$ [hint : first write $\mathrm{K}(\mathrm{x})$ in terms of Unit function]
(ix) Solve : $y^{\prime}(x)-\int_{0}^{x} 2 e^{x-r} y(r) d r=x e^{x}, y(0)=0$

QUESTION 21. Use undetermined Coeff. Method to solve for $y(x)$:
(i) $y^{(2)}+6 y^{\prime}-7 y=0$
(ii) $y^{(6)}-7 y^{(5)}+10 y^{(4)}=0$
(iii) $y^{(4)}+6 y^{(3)}+9 y^{(2)}=0$
(iv) $y^{(6)}-7 y^{(5)}+10 y^{(4)}=10$
(v) $y^{(2)}+6 y^{\prime}-7 y=e^{-7 x}$
(vi) $y^{(2)}+2 y^{\prime}+20 y=0$
(vii) $y^{(2)}+2 y^{\prime}+5 y=2 x+3$
(viii) $y^{(2)}+6 y^{\prime}-7 y=\cos (x)$
(ix) $y^{(2)}+2 y^{\prime}+5 y=\cos (x)$
(x) $y^{(2)}+4 y=\sin (2 x)$

QUESTION 22. Use undetermined Coeff. Method to solve for $y(x)$ for y_{p} you may use substitution or Laplace as in class:
(i) $y^{(2)}+14 y^{\prime}+49 y=x^{7} e^{-7 x}$ [for y_{p} here Laplace method take much less time than substitution / I think!, note that here if you want use substitution $\left.y_{p}=x^{2}\left(a_{7} x^{7}+a_{6} x^{6}+\ldots+a_{0}\right)\right]$
(ii) $y^{(2)}+9 y^{\prime}+8 y=2 x+3$ [here y_{p} will take same time using either method, note $y_{p}=a x+b$ find a, b]
(iii) $y^{(4)}+y^{(2)}=\cos (x)$ [note $y_{h}=c_{1}+c_{2} x+c_{3} \cos (x)+c_{4} \sin (x)$. Since $\cos (\mathrm{x})$ appears only once in y_{h} and the given $\mathrm{LDE}=\cos (\mathrm{x})$, we conclude $y_{p}=x(\operatorname{acos}(x)+b \sin (x))$, I guess substitution here is easier to find y_{p}.]
(iv) $y^{(2)}+6 y^{\prime}+25 y=e^{-3 x}$ [Note $y_{h}=e^{-3 x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)$, for y_{p} note that $e^{-3 x}$ is not a solution to y_{h}. Here, $y_{p}=a e^{-3 x}$, find a. Both method will take the same time.]
(v) $y^{(2)}+4 y=\sin (3 x)$ [Hint $y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)$, and $y_{p}=a \cos (3 x)+b \sin (3 x)$. I guess substitution is easier here!]
(vi) $y^{(2)}+4 y^{\prime}+4 y=\left(x^{2}+3 x-2\right) e^{-2 x}$. [for y_{p}, Laplace much easier!!!]
(vii) Solve $x^{4} y^{(2)}+5 x^{3} y^{\prime}+3 x^{2} y=0$.
(viii) Solve $3 y^{(2)}+6 y^{\prime}+3=e^{-x} U(x-1)$. [Note here for y_{p} must use laplace, I have no idea for substitution!]

QUESTION 23. Find the largest interval around x so that the LDE: $\left.\frac{x-3}{\sqrt{3 x+6}}\right) y^{(4)}+(x-1) y=x^{2}+13, y^{\prime}(1)=7, y(1)=$ -6 has a unique solution.

QUESTION 24. 1) Find $\ell\left\{e^{4 x}\right\}$,
2) $\ell^{-1}\left\{\frac{s+3}{s^{2}-7 s+6}\right\}$.

QUESTION 25. Solve the following DE:

1) $y^{(2)}+8 y^{\prime}+12 y=4, y(0)=1, y^{\prime}(0)=0$.
2) $2 y^{(2)}+3 y^{\prime}+y=0, y(0)=3$ and $y^{\prime}(0)=-2$

QUESTION 26. (i) A body at a temperature 50 F is placed outside where the temperature is 100 F . If after 5 minutes, the temperature of the body is 60 F . a) How long it will take the body to reach 60 F ? b) What is the temperature of the body after 20 minutes?[Solution: $d T / d t=k(T-100)$. Solve it by separable or first order linear. $T=c e^{-k t}+100$. Note that $T(0)=50$ and $T(5)=60$. For (a): the answer is $\mathrm{t}=15.4$ minutes. For (b) the answer is 79.5 F
(ii) Electric source of an electric circuit is given as $E(t)=100(\sin (t)+\cos (t))$, the resistor-constance $R=100$ Ohms, the capacitor-constant $c=0.01$ Farad (No inductor is attached to the circuit). Initially, the charge on the capacitor is 2 . Find the current $i(t)$ in the circuit at any time t. Find the steady-state-current.
[Solution: $i(t)=q^{\prime}(t)$. We have $100 q^{\prime}+q(t) / 0.01=100(\sin (t)+\cos (t))$. Hence $q^{\prime}(t)+g(t)=\sin (t)+\cos (t)$. Hence $q(t)=\int e^{t}(\sin (t)+\cos (t)) d t / e^{t}$. Thus $q(t)=c e^{-t}+\sin (t) e^{t}$. Since $q(0)=2$, we have $c=2$. Thus $i(t)=q^{\prime}(t)=-2 e^{-t}+\cos (t) e^{t}+\sin (t) e^{t}$. Note that $-2 e^{-t}$ reaches 0 when t is very huge. Hence the steady-state-current is determined by $\left.\cos (t) e^{t}+\sin (t) e^{t}\right]$
(iii) Electric source of an electric circuit is given as $E(t)=10 t^{2}+t$, the resistor-constance $R=10$ Ohms, the inductorconstant $L=0.5$ Henry (No capacitor is attached to the circuit). Initially, the current is 6 amperes. Find the current $i(t)$ in the circuit at any time t. Find the steady-state-current.
[Solution: $0.5 i^{\prime}(t)+10 i(t)=10 t^{2}+t$. Thus $i^{\prime}(t)+20 i(t)=20 t^{2}+2 t$. Thus $i(t)=\int\left(20 t^{2}+2 t\right) e^{20 t} d t / e^{20 t}$. Hence $i(t)=t^{2} e^{20 t}+c e^{-20 t}$. Since $i(0)=6, c=6$. Thus $i(t)=t^{2} e^{20 t}+6 e^{-20 t}$. Since $6 e^{-20 t}$ approaches zero when t is very huge, the steady-state-current is $t^{2} e^{20 t}$.]
(iv) Electric source of an electric circuit is given as $E(t)=10 \sin (t)$, the resistor-constance $R=180$ Ohms, the inductor-constant $L=20$ Henry, capacitor-constant $c=1 / 280$. Initially, the current is 1 ampere and no charge on the capacitor. Find the current $i(t)$ in the circuit at any time t. Find the steady-state-current.
[Solution: $20 q^{(2)}+180 q^{\prime}+280 q=10 \sin (t)$. Thus (1) $q^{(2)}+9 q^{\prime}+14 q=0.5 \sin (t)$. We know $q(t)=q_{h}(t)+q_{p}(t)$. To find $q_{h}(t)$: set $q^{(2)}+9 q^{\prime}+14 q=0$. Thus $m^{2}+9 m+14=0$. $q_{h}(t)=c_{1} e^{-2 t}+c_{2} e^{-7 t}$. To find $q_{p}(t)$: we may use undetermined coefficient method: so $q_{p}(t)=a \sin (t)+b \cos (t)$. by substitution in (1) we have $a=13 / 500$ and $b=-9 / 500$. Thus $q(t)=c_{1} e^{-2 t}+c_{2} e^{-7 t}+\frac{13}{500} \sin (t)+\frac{-9}{500} \cos (t)$. Since $i(0)=q^{\prime}(0)=1$ and $q(0)=0$. We have $c_{1}=110 / 500$ and $c_{2}=-101 / 500$. Now derive $q(t)$ in order to get $i(t)$. Note that the steady-state-current is $\left.\frac{13}{500} \cos (t)+\frac{9}{500} \sin (t)\right]$

QUESTION 27. (i) Find the critical points of $y^{\prime}=-y^{2}+7 y-10$ and classify each as stable, semi-stable, unstable..
(ii) For the equation above, roughly sketch the solution graph if $y(0)=4$.
(iii) Find the actual solution for the equation above(in I) (i.e. solve the given D. E), [Hint: use separable method, you need to use integration by fraction]]
(iv) A body at a temperature 50 F is placed outside where the temperature is 100 F . If after 5 minutes, the temperature of the body is 60 F . a) How long it will take the body to reach 60 F ? b) What is the temperature of the body after 20 minutes? [Solution: $d T / d t=k(T-100)$. Solve it by separable or first order linear. $T=c e^{-k t}+100$. Note that $T(0)=50$ and $T(5)=60$. For (a): the answer is $\mathrm{t}=15.4$ minutes. For (b) the answer is 79.5 F
(v) Let $A(t)$ be the amount of salt at any time t . A tank initially holds 100 gallons of a mixture containing 20 kg of salt. A fresh water is poured into the tank at the rate $5 \mathrm{gal} / \mathrm{min}$, while the well stirred mixture leaves the tank at the same rate. a) Find A(t). [Hint $d A / d t=0-[5(1 / 100)] A(t)=0-A(t) / 20$. So $A(t)=c e^{-t / 20}$. Note that $A(0)=20$ so find c , note that fresh water means each gallon enters the tank has 0 kg of salt!, concentration of salt in each gallon leaves the tank is $A(t) /(100+5 t-5 t)=A(t) / 100]$
(vi) Let $A(t)$ be the amount of salt at any time t . A 50 -gal tank initially holds 10 gallons of fresh water (i.e. $A(0)=0$). A mixture containing 1 kg of salt per gallon is poured into the tank at the rate $4 \mathrm{gal} / \mathrm{min}$, while the well stirred mixture leaves the tank at rate $2 \mathrm{gal} / \mathrm{min}$. a) Find $\mathrm{A}(\mathrm{t})$. b) Find the amount of salt at the moment of overflow? [Hint $d A / d t=4-[2(1 /(10+4 t-2 t)] A(t)=4-2 /(10+2 t) A(t)$. Solve it using first order linear method, $A(t)=\left(40 t+4 t^{2}\right) /(10+2 t)$. Note that $A(0)=0$, concentration of salt in each gallon leaves the tank is $A(t) /(10+4 t-2 t)=A(t) /(10+2 t)$. For b) note overflow occurs when volume of mixture in the tank $=$ volume of the tank. Volume of the tank is 50 . Volume of mixture (liquid) in the tank is $(10+4 \mathrm{t}-2 \mathrm{t})=10+2 \mathrm{t})$. Thus set 10 $+2 \mathrm{t}=50$. We get $\mathrm{t}=20$. Now find $A(20)$, I guess $\mathrm{A}(20)=48 \mathrm{~kg}$.]

QUESTION 28. (i) Find $\ell\left\{U(x-3) e^{2 x}\right\}$
(ii) Find $\ell\left\{\int_{0}^{x} e^{-3 r} \sin (2 r) d r\right\}$ [Hint : Note $e^{-3 r}=e^{-3 x} e^{3 x-3 r}$. Thus $\ell\left\{\int_{0}^{x} e^{-3 r} \sin (2 r) d r\right\}=$ $\left.\ell\left\{e^{-3 x} \int_{0}^{x} e^{3 x-3 r} \sin (2 r) d r\right\}\right]$
(iii) Find $\ell^{-1}\left\{\frac{s+10}{(s+4)^{4}}\right\}$
(iv) Find $\ell^{-1}\left\{\frac{s e^{-s}}{(s+3)^{2}+4}\right\}$
(v) Use CONVOLUTION Twice to find $\ell^{-1}\left\{\frac{1}{s^{2}\left(s^{2}+9\right)}\right\}$
(vi) Use convolution to find $\ell^{-1}\left\{\frac{1}{(s+4)^{2}\left((s+4)^{2}+9\right)}\right\} \quad[H i n t:$ Use 5]
ii) Find $\ell^{-1}\left\{\frac{8 e^{-3 s}}{s^{2}-4}\right\}$
iii) Let

$$
k(x)= \begin{cases}2 & 0 \leq x<4 \\ 6 & x \geq 4\end{cases}
$$

Solve $y^{(2)}-6 y^{\prime}+8 y=k(x), \mathrm{y}(0)=y^{\prime}(0)=0$ [hint : first write $\mathrm{K}(\mathrm{x})$ in terms of Unit function]
ix) Solve : $y^{\prime}(x)-\int_{0}^{x} 2 e^{x-r} y(r) d r=x e^{x}, y(0)=0$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

